Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
نویسندگان
چکیده
Although attractive to hydrologists, artificial neural network modeling still lacks norms that would help modelers to create and train efficient rainfall-runoff models in a systematic way. This study focuses on the impact of the length of observed records on the performance of multiplelayer perceptrons (MLP), and compare their results with those of a parsimonious conceptual model equipped with an updating scheme. Both models were calibrated (trained) for one-day-ahead stream flow predictions. 92 different model realizations were obtained for 1-, 3-, 5-, 9-, and 15-year time sub-series created from a 24-year training set, shifting by a one-year sliding window. All the model realizations were verified against the same 7-year test set. The results revealed that MLP stream flow mapping was efficient as long as wet weather data were available for the training; the longer series implicitly guarantee that the data contain valuable information of the hydrological behavior; the results were consistent with those reported for conceptual rainfall-runoff models. The physical knowledge in the conceptual models allowed them to make much better use of 1-year training sets than the MLPs. However, longer training sets were more beneficial to the MLPs than to the conceptual model. Both types shared best performance about evenly for 3and 5-year training sets, but MLPs did better whenever the training set was dominated by wet weather. The MLPs continued to improve for input vectors of 9 years and more, which was not the case of the conceptual model.
منابع مشابه
Monthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملDaily river flow forecasting in a semi-arid region using twodatadriven
Rainfall-runoff relationship is very important in many fields of hydrology such as water supply and water resourcemanagement and there are many models in this field. Among these models, the Artificial Neural Network (ANN) wasfound suitable for processing rainfall-runoff and opened various approaches in hydrological modeling. In addition,ANNs are quick and flexible approaches which provide very ...
متن کاملComparison of Efficiency for Hydrological Models (AWBM & SimHyd) and Neural Network (MLP & RBF) in Rainfall–Runoff Simulation (Case study: Bar Aryeh Watershed -Neyshabur)
For suitable programming and management of water resources, access to perfect information from the discharge at the watershed outlet is essential. In most watersheds, the hydrometric station is not available; then, different models are used to simulate the discharge within watersheds without data. The selection of preferred model for rainfall- runoff simulation depends to the purpose of modelin...
متن کاملFlood Forecasting Using Artificial Neural Networks in Black-Box and Conceptual Rainfall-Runoff Modelling
The paper presents a comparison of lumped runoff modelling approaches, aimed at the realtime forecasting of flood events, based on or integrating Artificial Neural Networks (ANNs). ANNs are used in two ways: (a) as black-box type runoff simulation models or (b) for the real-time improvement of the discharge forecasts issued by a conceptual-type rainfall-runoff model. As far as the coupling of A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 19 شماره
صفحات -
تاریخ انتشار 2004